
Eur. Phys. J. A 6, 239–241 (1999) THE EUROPEAN
PHYSICAL JOURNAL A
c© Springer-Verlag 1999

Short note

New nuclide 139Tb and (EC+ β+) decay of 138,139Gd
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Abstract. The unknown isotope 139Tb and the known isotopes 138,139Gd were produced in the 36Ar+106Cd
reaction and studied by using a He-jet tape transport system in combination with X-γ and γ-γ coincidence
measurements. The half-lives of 139Tb, 139gGd, 139mGd and 138Gd were determined to be 1.6(2), 5.8(9),
4.8(9) and 4.7(9) s, respectively. Partial (EC+β+) decay schemes of 139gGd, 139mGd and 138Gd were
proposed for the first time.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 21.10.Tg Lifetimes – 27.60.+j
90 ≤ A ≤ 149

The unknown isotope 139Tb is located very close to the
proton-drip line, its one-proton separation energy being
predicted to be negative [1, 2].Search for 139Tb will be
helpful for further investigation of the proton radioactiv-
ity in the rare-earth region. A detailed in-beam γ study
of 138Gd was published in 1994 [3], but the decay proper-
ties of 138Gd have not been studied so far. The β-delayed
proton decay of 139Gd with a half-life of 4.9(10) s was
investigated by Nitschke et al. in 1983 [4]. However, the
(EC+β+) decay scheme of 139 Gd has not been reported
yet. Study of (EC+β+) decay of 138,139Gd will provide
the nuclear-structure information of the low-lying states
in their daughter nuclei near the proton-drip line.

The experiment was carried out at the SFC cyclotron
of HIRFL (Heavy Ion Research Facility in Lanzhou),
Lanzhou, China. A 220-MeV 36Ar11+ beam from the cy-
clotron entered a helium-filled target chamber through
a 1.94mg/cm2 thick Havar window and an energy de-
grader,and finally bombarded a 2.5 mg/cm2 thick en-
riched 106Cd (enrichment 75%) foil surrounded by a water-
cooling device. The beam intensity was about 0.3 eµA. We
used a helium-jet in combination with a tape transport
system to move the radioactivities into a shielded count-
ing room. PbCl2 as aerosol at 430oC was added to the
helium gas. Beta-delayed γ rays from the reaction prod-
ucts were measured up to 2.0 MeV by using two coaxial
HpGe(GMX) detectors. A HpGe planar detector was used
for X-ray measurements. The γ-γ-t or X-γ-t coincidence
events were collected event-by-event on magnetic tape.

139Tb: In the γ spectrum gated by Gd-Kα X rays
(Fig. 1) two new γ rays with the energies of 109.0- and
119.7-keV were observed. Comparing the excitation func-

Fig. 1. Low-energy part of the γ spectrum gated by Gd-Kα X
rays in the 36Ar + 106Cd reaction

tions of the two γ rays with that of the 328.4-keV γ ray
(Fig. 2), the most intense γ ray of 140Tb [5], we assigned
the 109.0- and 119.7-keV γ rays to the decay of 139Tb.
These two γ rays are not among the γ transitions between
the high-spin states in 139Gd reported from in-beam mea-
surements [6]. This fact is not surprising since the ground-
state spin-parity of 139Tb was predicted to be 3/2+ by
Möller et al. [1] and β decay populates only low-spin state
in 139Gd. However, the fact seems to be not consistent
with the 11/2− assignment of the ground-state spin-parity
of 139Tb estimated from systematic trends by Audi et al.
[2]. From the time spectra of these two γrays (Fig. 3), the
half-life of 139Tb was determined to be 1.6(2) s, which is
consistent with the predictions by the gross theory [7] (1.6
s) or microscopic theory [8] (1.5 s (Hilf), 1.7 s (Groote)
and 1.2 s (Möller)), where Hilf, Groote, and Möller stand
for different mass formula used in the theoretical predic-
tions.
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Fig. 2. Excitation functions of the 109.0- and 119.7-keV rays
in the 36Ar + 106Cd reaction

Fig. 3. Time spectra of the 109.0- and 119.7-keV rays in the
36Ar + 106Cd reaction

139,138Gd: In the γ spectrum gated by Eu-Kα X rays
at least four groups of γ rays were observed. One group
with an intense 174.7-keV γ ray was assigned to the de-
cay of 140Gd, which is already known [9]. Another group
with an intense 115.8-keV γ ray as well as 104.1-, 309.7-
and 322.5-keV γ transitions was assigned to the decay
of the ground state of 139Gd (139gGd), based on the in-
beam γ study of 139Eu [10]. According to the excitation
functions shown in Fig. 4, the remaining two groups with
intense 121.6- and 64.7-keV γ rays were assigned to the
decays of a low-spin isomeric state of 139Gd (139mGd) and
138Gd, respectively. The partial (EC+β+) decay schemes
of 139gGd and 139mGd, including 16 new low-lying states
in the daughter nucleus 139Eu, are shown in Fig. 5. The
half-lives of 139gGd (5.8(9) s) and 139mGd (4.8(9) s) agree

Fig. 4. Excitation functions of the four intense γ rays in the γ
spectrum gated by Eu-Kα X rays in the 36Ar + 106Cd reaction

Fig. 5. Proposed (EC+β+) decay schemes of 139gGd and
139mGd

with the previous result of 4.9(10) s extracted from the
β-delayed proton decay of 139Gd by Nitschke et al. [4].
Furthermore, the measured half-life of 139gGd is in good
agreement with the value of 5.9 s calculated by using the
macroscopic-microscopic mass model of Möller et al. [1]. A
partial (EC+β+) decay scheme of 138Gd, including 7 new
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Fig. 6. Proposed ( EC+β+) decay scheme of 138Gd

low-lying states in the daughter nucleus 138Eu, is shown
in Fig. 6. The measured half-life of 138Gd decay (4.7(9) s)
is in good agreement with the predictions by the gross
theory [6] (4.9 s) or the macroscopic-microscopic model of

Möller et al. [1] (4.2 s). The half-lives for 139Tb, 139gGd,
139mGd, and 138Gd are important results in the experi-
ment, and compared with different theoretical predictions
or previous result. Since the Beta-decay half-life is a gross
property, the agreement between theory and experiment
does not necessarily mean that the theoretical calculations
of QEC value and beta-strength distribution are correct.
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