## Short note

## New nuclide <sup>139</sup>Tb and (EC+ $\beta^+$ ) decay of <sup>138,139</sup>Gd

Xie Yuanxiang, Xu Shuwei, Li Zhankui, Yu Yong, Pan Qiangyan, Wang Chunfang, Zhang Tianmei

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

Received: 2 June 1999 / Revised version: 4 August 1999 Communicated by D. Schwalm

**Abstract.** The unknown isotope <sup>139</sup>Tb and the known isotopes <sup>138,139</sup>Gd were produced in the <sup>36</sup>Ar+<sup>106</sup>Cd reaction and studied by using a He-jet tape transport system in combination with X- $\gamma$  and  $\gamma$ - $\gamma$  coincidence measurements. The half-lives of <sup>139</sup>Tb, <sup>139g</sup>Gd, <sup>139m</sup>Gd and <sup>138</sup>Gd were determined to be 1.6(2), 5.8(9), 4.8(9) and 4.7(9) s, respectively. Partial (EC+ $\beta$ <sup>+</sup>) decay schemes of <sup>139g</sup>Gd, <sup>139m</sup>Gd and <sup>138</sup>Gd were proposed for the first time.

**PACS.** 23.40.-s  $\beta$  decay; double  $\beta$  decay; electron and muon capture – 21.10.Tg Lifetimes – 27.60.+j  $90 \le A \le 149$ 

The unknown isotope <sup>139</sup>Tb is located very close to the proton-drip line, its one-proton separation energy being predicted to be negative [1,2].Search for <sup>139</sup>Tb will be helpful for further investigation of the proton radioactivity in the rare-earth region. A detailed in-beam  $\gamma$  study of <sup>138</sup>Gd was published in 1994 [3], but the decay properties of <sup>138</sup>Gd have not been studied so far. The  $\beta$ -delayed proton decay of <sup>139</sup>Gd with a half-life of 4.9(10) s was investigated by Nitschke et al. in 1983 [4]. However, the (EC+ $\beta^+$ ) decay scheme of <sup>139</sup>Gd has not been reported yet. Study of (EC+ $\beta^+$ ) decay of <sup>138,139</sup>Gd will provide the nuclear-structure information of the low-lying states in their daughter nuclei near the proton-drip line.

The experiment was carried out at the SFC cyclotron of HIRFL (Heavy Ion Research Facility in Lanzhou), Lanzhou, China, A 220-MeV <sup>36</sup>Ar<sup>11+</sup> beam from the cvclotron entered a helium-filled target chamber through a  $1.94 \text{mg/cm}^2$  thick Havar window and an energy degrader, and finally bombarded a  $2.5 \text{ mg/cm}^2$  thick enriched <sup>106</sup>Cd (enrichment 75%) foil surrounded by a watercooling device. The beam intensity was about  $0.3 e \mu A$ . We used a helium-jet in combination with a tape transport system to move the radioactivities into a shielded counting room. PbCl<sub>2</sub> as aerosol at 430°C was added to the helium gas. Beta-delayed  $\gamma$  rays from the reaction products were measured up to 2.0 MeV by using two coaxial HpGe(GMX) detectors. A HpGe planar detector was used for X-ray measurements. The  $\gamma$ - $\gamma$ -t or X- $\gamma$ -t coincidence events were collected event-by-event on magnetic tape.

<sup>139</sup>**Tb**: In the  $\gamma$  spectrum gated by Gd-K<sub> $\alpha$ </sub> X rays (Fig. 1) two new  $\gamma$  rays with the energies of 109.0- and 119.7-keV were observed. Comparing the excitation func-



Fig. 1. Low-energy part of the  $\gamma$  spectrum gated by Gd-K\_ $\alpha$  X rays in the  $^{36}Ar$  +  $^{106}Cd$  reaction

tions of the two  $\gamma$  rays with that of the 328.4-keV  $\gamma$  ray (Fig. 2), the most intense  $\gamma$  ray of <sup>140</sup>Tb [5], we assigned the 109.0- and 119.7-keV  $\gamma$  rays to the decay of  $^{139}\mathrm{Tb}.$ These two  $\gamma$  rays are not among the  $\gamma$  transitions between the high-spin states in <sup>139</sup>Gd reported from in-beam measurements [6]. This fact is not surprising since the groundstate spin-parity of <sup>139</sup>Tb was predicted to be  $3/2^+$  by Möller et al. [1] and  $\beta$  decay populates only low-spin state in <sup>139</sup>Gd. However, the fact seems to be not consistent with the  $11/2^{-}$  assignment of the ground-state spin-parity of <sup>139</sup>Tb estimated from systematic trends by Audi et al. [2]. From the time spectra of these two  $\gamma$  rays (Fig. 3), the half-life of  $^{139}$ Tb was determined to be 1.6(2) s, which is consistent with the predictions by the gross theory [7] (1.6) s) or microscopic theory [8] (1.5 s (Hilf), 1.7 s (Groote) and 1.2 s (Möller)), where Hilf, Groote, and Möller stand for different mass formula used in the theoretical predictions.



Fig. 2. Excitation functions of the 109.0- and 119.7-keV rays in the  $^{36}\mathrm{Ar}$  +  $^{106}\mathrm{Cd}$  reaction



Fig. 3. Time spectra of the 109.0- and 119.7-keV rays in the  $^{36}\mathrm{Ar}$  +  $^{106}\mathrm{Cd}$  reaction

 $^{139,138}\mathbf{Gd}$ : In the  $\gamma$  spectrum gated by Eu-K<sub>\alpha</sub> X rays at least four groups of  $\gamma$  rays were observed. One group with an intense 174.7-keV  $\gamma$  ray was assigned to the decay of  $^{140}$ Gd, which is already known [9]. Another group with an intense 115.8-keV  $\gamma$  ray as well as 104.1-, 309.7- and 322.5-keV  $\gamma$  transitions was assigned to the decay of the ground state of  $^{139}$ Gd ( $^{139g}$ Gd), based on the inbeam  $\gamma$  study of  $^{139}$ Eu [10]. According to the excitation functions shown in Fig. 4, the remaining two groups with intense 121.6- and 64.7-keV  $\gamma$  rays were assigned to the decays of a low-spin isomeric state of  $^{139}$ Gd ( $^{139m}$ Gd) and  $^{138}$ Gd, respectively. The partial (EC+ $\beta^+$ ) decay schemes of  $^{139g}$ Gd and  $^{139m}$ Gd, including 16 new low-lying states in the daughter nucleus  $^{139}$ Eu, are shown in Fig. 5. The half-lives of  $^{139g}$ Gd (5.8(9) s) and  $^{139m}$ Gd (4.8(9) s) agree



**Fig. 4.** Excitation functions of the four intense  $\gamma$  rays in the  $\gamma$  spectrum gated by Eu-K<sub> $\alpha$ </sub> X rays in the <sup>36</sup>Ar + <sup>106</sup>Cd reaction



Fig. 5. Proposed (EC+ $\beta^+$ ) decay schemes of  $^{139g}$ Gd and  $^{139m}$ Gd

with the previous result of 4.9(10) s extracted from the  $\beta$ -delayed proton decay of <sup>139</sup>Gd by Nitschke et al. [4]. Furthermore, the measured half-life of <sup>139g</sup>Gd is in good agreement with the value of 5.9 s calculated by using the macroscopic-microscopic mass model of Möller et al. [1]. A partial (EC+ $\beta^+$ ) decay scheme of <sup>138</sup>Gd, including 7 new



**Fig. 6.** Proposed (  $EC+\beta^+$ ) decay scheme of <sup>138</sup>Gd

low-lying states in the daughter nucleus  $^{138}$ Eu, is shown in Fig. 6. The measured half-life of  $^{138}$ Gd decay (4.7(9) s) is in good agreement with the predictions by the gross theory [6] (4.9 s) or the macroscopic-microscopic model of Möller et al. [1] (4.2 s). The half-lives for <sup>139</sup>Tb, <sup>139</sup>Gd, <sup>139m</sup>Gd, and <sup>138</sup>Gd are important results in the experiment, and compared with different theoretical predictions or previous result. Since the Beta-decay half-life is a gross property, the agreement between theory and experiment does not necessarily mean that the theoretical calculations of  $Q_{EC}$  value and beta-strength distribution are correct.

This work was supported by the National Natural Science Foundation of China (19775056) and the Chinese Academy of Sciences.

## References

- P. Möller, J. R. Nix, and K. -L. Kratz, At. Data Nucl. Data Tables, 66, 131 (1997)
- G. Audi, O. Bersillon, J. Blachot, and A. H.Wapstra, Nucl. Phys., A624, 1 (1997)
- E. S. Paul, C. W. Beausang, R. M. Clark et al., J. Phys. G20, 751 (1994)
- J. M. Nitschke, M. D. Cable, and W. -D. Zeitz, Z. Phys. A312, 265 (1983)
- R. B. Firestone, J. Gilat, J. M. Nitschke et al., Phys. Rev. C43, 1066 (1991)
- R. Ma, D. B. Fossan, E. S. Paul et al., J. Phys. G16, 1233 (1990)
- 7. T. Horiguchi, T. Tachibana, and J. Katakura, Chart of the Nuclides (1996)
- M. Hirsch, A. Staudt, K. Muto et al., At. Data Nucl. Data Tables, 53, 165 (1993)
- R. Turcotte, H. Dautet, S. K. Mark et al., Z. Phys. A331, 109 (1988)
- P. Vaska, C. W. Beausang, D. B. Fossan et al., Phys. Rev. C52, 1270 (1995)